Link

Hacking the Mind Epilogue: Psychosurgery

Hacking the Brain Epilogue: Psychosurgery

While we’re on the subject of “hacking the human mind“, it looks like there is renewed interest in psychosurgery. The link goes to an article about deep brain stimulation for alcoholic cravings, PTSD, and depression!

People have been triyng to control psychiatric conditions with surgery since the days of the prefrontal lobotomy. Electrical stimulation has the advantages of precision and reversibility. However, as with any neurosurgical procedure it relies upon localizing an unwanted symptom to a specific location in the brain. For example, deep brain stimulation works for Parkinson’s because the disease is localized to the basal ganglia.

No matter how much funding you throw at electroneurology, it won’t do any good if an unwanted emotion or compulsion is spread out over a large area of the brain. It remains to be seen how well localized things like alcoholism and PTSD are.

Why did the Corpus Callosum cross the road?

Why did the Corpus Callosum cross the road?
To get to the other side.

Why did the beta-amyloid cross the road?
Because… I… it… What was the question again?

Why did the spinothalamic tract cross the road?
The other side was on fire.

Why did the amygdala cross the road?
It was running away from a… OH MY GOD ITS COMING RIGHT FOR US!

Why did the central sulcus cross the road?
You would too, if you were surrounded by creepy homunculus things.

Why did the Wernicke’s aphasia cross the road?
The road a cross dirun like two. Free crosses rodeo why? Arrest and Texas in red, yes happy area.

Why did the Korsakoff syndrome cross the road?
I don’t know, what does it matter to you? I was going to the park. That’s right, I was taking a walk in the park. Now get off my back!

Why did the septum pellucidum cross the road?
I don’t know but that sounds pretty bad, you better’d start dexamethasone.

Why did the optic chiasm cross the road?
Because it couldn’t see the median.

Why did the cavernous sinus cross the road?
It didn’t.

Why did the Broca’s aphasia cross the road?
Hodor?

Hacking the Human Mind: Enter Reality

Image courtesy of Emotiv/ExtremeTech.

Hacking the Human Mind, Pt. 2: Enter Reality
In the first part of this post, I discuss the concept of “hacking the human mind” in mythology and fiction. Ever since antiquity, many people have tried to improve the human mind and body. The information era has contributed the term “hacking” to the idea of human-improvement. More recently, pop culture has adopted the idea of hacking humanity and turned it into a ubiquitous plot device.

 


Snap Back to Reality
Whoops there goes Gravity

Hollywood has portrayed hacker-like characters as superhumans, shadowy villains or even honest-to-goodness sorcerers. However, hacker culture in real life is a far cry from its fictional portrayal. While wizards and sorcerers jealously guard their knowledge, real-world hackers are famous for sharing knowledge. (especially when they’re not supposed to)

Possibly thanks to the popularity of “hacking the human mind” as an idea, medical researchers have started to promote the so-called hacker ethic. This philosophy holds that decentralized, open-source use of technology can improve the world. Traditional medical research goes through multiple cycles of proposal, review and revision before anything happens. Successes are often published in closed-access journals while failures are often buried. The hacker ethos encourages freewheeling experimentation and open-source sharing among the scientific community.

Among its many innovations, hacker culture has given birth to the idea of medical hackathons. A “hackathon” is defined as an short duration (often just a weekend), high-intensity multidisciplinary collaboration. During the event, participants make “60 second pitches” to attract other people who might have special skills. For example, a physician with a good idea for telemedicine might go around trying to find a coder who knows about Internet security. Then they could come across a hacker with machine-vision expertise and use him to improve their cameras.

Although they occur too quickly to really polish a product or conduct clinical trials, hackathons generate numerous bright ideas that can be worked on later. In a way they are the ultimate brainstorm.


Heroes of the Brainstorm
Harder, Better, Faster, Stronger

Hackathons are undoubtedly coming up with lots of very good ideas. However, even the best medical ideas take a long time to implement. The only ideas that can be implemented immediately are very small pieces of provider-side software. (ie, enhanced changeover sheets for hospitalists) Anything that touches a patient requires a lengthy process of requests, reviews, and consents before it is ever used… and only then can you figure out whether it is effective.

As of 2014, the medical hackathon simply hasn’t been around long enough to show much of an effect. It’s a bit like a drug in Phase I-Phase II studies: everyone has great hope that it will improve things, but you can’t point to a major innovation that would not have been possible without the hackathon.

Integrating small-scale hackathon products into larger suites of medical software is a much tougher problem. Even the large-vendor EHRs (Epic, Meditech, Cerner) have difficulty communicating with each other, let alone with smaller pieces of software. The greatest problem in healthcare IT is that the so-called “HL7 Standard” isn’t really a standard.

Standard file formats exist so that they can be consistently read by everyone. A PDF looks the same on a PC, Mac, iPhone or Google Glass. A Kindle file (.AZW) is the same on a Kindle, PC or phone. Even medical imaging has a true standard format. Whether your CT scanner is a GE, Phillips, or Siemens, when you export DICOM images to another physician, the CT slices will show up exactly the same.

HL7 is not like that at all. In my personal experience, naively transferring documents between two pieces of “HL7-compliant” software results in loss or misinterpretation of some of the data. In order to fix this, you need a highly trained IT expert to create a specialized “connectivity interface”, or sometimes you pay big bucks to purchase such an interface. I am amazed that things are still so difficult in the year 2014.

In the field of traditional software design, hackers have benefited from the uniform interoperability of Unix (Linux) for many decades. As of today, healthcare lacks this important feature.

Maybe the hackers could come up with a solution for interoperability?


Big Data: The Rise of the Machines
Thank God it’s not Big Lore, Big Bishop, or Big Terminator

One of the promises of “medical hacking” has been the application of “Big Data” techniques to healthcare. Data analysis in healthcare has always been difficult and often inconsistently performed. Many medical students and residents can tell you about painstaking research hours spent on manual data-entry. Big Data techniques could turn ten thousand med student hours into five minutes of computer script runtime. Unfortunately, to this date Big Data has been much less successful in real life.

So far, the two Biggest Data medical innovations have been Google Flu Trends and 23andMe. GFT purports to forecast the severity of the flu season, region by region, based on statistics on flu-related Google searches. 23andMe was originally supposed to predict your risk of numerous diseases and conditions using a $99 DNA microarray (SNP) analysis. Far from being a home run for Big Data, both of these tools are more reminiscent of a strikeout, if not a pick-six.

GFT was billed as a Big Data tool that would vastly improve the accuracy and granularity of infectious disease forecasting. When first introduced in 2008, GFT’s flu predictions were more accurate than any existing source. However, every year it became less and less accurate, until it became worse than simply measuring how many flu cases happened two weeks ago. GFT’s performance degraded so badly, it was described as a “parable of traps in data analysis” by Harvard researchers.

23andMe offered SNP testing of the entire genome, used both for ancestry analysis and disease prediction. Prior to November 2013, the website offered a vast number of predictors ranging from lung cancer to erectile dysfunction to Alzheimer’s dementia to drug side effects. It was held up as an exemplar of 21st-century genomic empowerment, giving individuals access to unprecedented information about themselves for the low, low price of $99.

The problem was, 23andMe never bothered to submit any scientific evidence of accuracy or reproducibility to the Food and Drug Administration. The FDA sent a cease and desist letter, forcing them to stop marketing their product as a predictive tool. They’re still selling their gene test, but they are only allowed to tell you about your ancestry. (not any health predictions) This move launched a firestorm, with some people arguing that the FDA was overstepping or even following “outdated laws“.

However, the bulk of the evidence suggested that 23andMe simply didn’t give accurate genetic info. Some molecular biologists pointed out the inherent flaws in SNP testing, which make it impossible for 23AndMe to be usably accurate. Others pointed out that even if accurate, most of the correlations were too weak to have any effect on lifestyle or healthcare. The New England Journal of Medicine concluded that the FDA was justified in issuing a warning, and that “serious dialogue” is required to set standards in the industry. Other commentators were “terrified” by 23andMe’s ability to use your genetic info for secondary studies. After all, how can 23andMe sell genetic tests for $99 when other companies charge thousands? Obviously they didn’t plan to make money from the consumers; instead, 23andMe hoped to make money selling genetic data to drug companies and the rest of the healthcare industry.

In the end, that is my biggest misgiving against medical Big Data. Thanks to social media (this blog included) we have already commoditized our browsing habits, our buying habits, our hobbies and fandoms. Do we really want to commoditize our DNA as well? If so, count me out.


Doctoring the Doctor
Damnit Jim, I’m a doctor, not a hologram!

Another big promise of the “hacker ethos” in medicine is that it could improve physician engagement and enthusiasm for technology. Small decentralized teams of hackers could communicate directly with physicians, skipping the multi-layered bureaucracy of larger healthcare companies.

Many healthcare commentators have (falsely) framed the issue of physician buy-in as a matter of technophobia. Doctors are “stuck in the past“, “Luddites in white coats”, and generally terrified of change. The thing is, it’s just not true. Just look at the speed at which new medical devices are popularized – everything from 4DCTs to surgical robots to neuronavigation units, insulin pumps, AICDs and deep brain stimulators. If physicians saw as much of a benefit from electronic health records (EHRs) as we were supposed to, we would be enthusiastic instead of skeptical.

I believe that EHR would be in much better shape today if there had never been an Obamacare EHR mandate. No one ever improved the state of the art by throwing a 158-page menu of mandates at it. Present-day EHRs care much more about Medicare and other billing rules than they do about doctor or nurse usability.

Back on subject, I do believe that medical hacking has the potential to get physicians more involved in technological innovation. So long as physicians are stuck dealing with massive corporate entities, we can provide feedback and suggestions but they are very unlikely to be implemented. Small-scale collaborations empower doctors with the ability to really change the direction of a project.

Now, not every medical hack will result in something useful. In fact, a lot of hacks will amount to little more than cool party tricks, but some of these hacks will evolve into more useful applications. Some easily-hackable projects may involve documents or files produced by older medical technology. During residency I worked on a research project involving radiation treatment plans from a very old, non DICOM-compliant system. We quickly discovered that the old CTs were not usable by modern treatment planning software. Fortunately, one of the physicists on our research team was familiar with DICOM. He coded a computer program that inserted the missing DICOM headers into the old CT images, allowing us to import old CTs without any problems.

Introducing more hackers to medicine can only increase the number of problems solved by astute coding.


What Happened to Superpowers?
Paging Dr. Manhattan…

The addition of hacker culture to medicine certainly has a lot of potential to improve the everyday practice of medicine. But what happened to the idea of “hacking the human mind” in order to develop super-strength and speed?

On a very rudimentary level, “hacking the mind” improves physical performance every time an athlete grows a beard for the playoffs or wears his college shorts under his NBA uniform. But true hacking should be more sophisticated than mere superstition!

Biofeedback is a common pre-game ritual for various athletes that could be construed as a minor form of “hacking the mind/body”. Dietary habits such as carb loading could also be considered a mild form of hacking. For less legal mind-body hacking you could always turn to performance enhancing drugs.

Speaking of drugs, there’s a long-held belief that people high on drugs (mostly PCP, sometimes meth or bath salts) gain superhuman strength. While the evidence is mostly anecdotal, there’s a plausible medical explanation. The Golgi tendon reflex normally prevents muscles from over-exerting themselves, and it can be suppressed in desperate situations (the “mother lifts a car off her child” scenario). It’s reasonable to assume that some drugs could have a similar effect.

It’s also reasonable to assume that military physicians have spent decades (the entire Cold War for sure) trying to produce a super-strength drug with fewer side effects than PCP. The fact that our entire army doesn’t have the physique of Captain America suggests that those efforts were unsuccessful. Granted, this doesn’t rule out the existence of a super serum that only worked on one guy ever.

Evolutionarily speaking, it is highly implausible that humans would have tremendous physiological potential locked behind some mental gate. If the human body had such great power, our prehistoric ancestors would have needed every ounce of it to outrun or outfight angry lions and hippos and crocs. It would make no sense for humans to have a mental block on our strength. Unless removing that mental block led to instant death or infertility, the first caveman to lose his mental block would be evolutionarily favored over the rest of proto-humanity. Therefore, it’s very unlikely to think that human performance can be “magically” improved with drugs, meditation or other techniques.


 

So let’s cap off this long ramble with a little teaser on evolution and human strength. This National Geographic feature suggests that early humans directly traded muscle strength for brain power.

http://news.nationalgeographic.com/news/2014/05/140527-brain-muscle-metabolism-genes-apes-science/

What is wrong with this argument?

Link

Google Car: No steering wheel!

Google Car: No steering wheel!

Just ran across this article about Google’s latest creation. It is an electric car that drives itself. The Googlecar has no steering wheel, gas pedal or brake pedal. It only has two buttons, “stop” and “go”. Google’s idea is that the car will be a taxicab-like rideshare, allowing people to hop in and tell the car where to go (OK Google, take me to the airport). You’ll be able to hail a self-driving cab through a smartphone app, much like Uber. Unlike Uber, there won’t be any point in leaving a Driver Rating!

In big cities where parking costs hundreds of dollars a month, self-driving rideshare cabs could really combine the convenience of cabs with the efficiency of buses. You could even put autocab stops at train stations, so that people don’t have to drive themselves to catch a train. This would significantly improve the usability and profitability of rail systems.

While the Googlecar is more of a proof of concept than a usable model, I believe that within our lifetimes automated ridesharing will dominate urban transportation. It makes too much sense. The greatest obstacle to the proliferation of autocabs will be regulatory in nature. Taxicab companies have already lobbied hard for every major city to ban Uber; they’ll fight ten times as hard over Googlecar. Inevitably, some day a Googlecar will get into a wreck. Even if it’s not Googlecar’s fault (after all, they’re supposed to have the reflexes of Spider-man vs Alien vs Predator vs Terminator) this will cause a big controversy and bigger litigation.

Now is the Microsoft version of a self-driving car named Cartana? I’m not sure I’d want to ride in that one.


Update (5/28):

Uber wants driverless cars. I guess there’s no need to reinvent the wheel when you’re removing it altogether.

http://techcrunch.com/2014/05/28/uber-confirms-record-breaking-fund-raising-hopes-for-driverless-ubers/

Hacking the Human Mind: The Other 90%

Image courtesy of Emotiv and ExtremeTech.

Hacking the Human Mind: The Other 90% (Pt. 1 of 2)
Luminous beings are we. Not this crude matter.

Can the Nervous System be Hacked?”, asks a New York Times headline? The article examines recent developments and ongoing research in peripheral nerve stimulation. To its credit, the NYT avoids the rampant sci-fi speculation all-too-common to biomedical research articles. Which is strange, because according to the Internet the NYT is supposed to reinvent itself for the digital age by turning into BuzzFeed. Guess the Grey Lady hasn’t gone full Upworthy – yet. Fortunately, blending fantasy with reality is what I do. So let’s get to it!

The meme of “hacking the human mind” fascinates me. While the idea of modifying humanity through clever tinkering has been around since time immemorial, it is deeply entrenched in 21st century popular culture. Human-hacking is frequently justified by the myth that humans only use 10% of their brains. If only a hacker could unleash that other 90% we’d be able to cure disease, boost intelligence, maybe even develop superhuman abilities. In a superhero-dominated Hollywood, “hacking the human mind” and/or “using the other 90%” is used as a convenient excuse for all sorts of ridiculously unrealistic abilities. In the real world of biology and medicine, hacking is used more as a workflow metaphor, encouraging loosely-organized cross-disciplinary teams instead of the rigid hierarchy prevalent in medicine.

In the first of a 2-part series on “Hacking the Human Mind”, I will focus on mythological and fictional influences on the concept of human-hacking. In a second half I will discuss the real-world implications.


Older than Dirt
Powered by Green Energy

As I mentioned, the concept of “hacking the human body” vastly predates the concept of hacking. Since antiquity, numerous martial arts orders have claimed that their training does more than just improve physical fitness and coordination. In traditional Chinese belief, the body has a large number of “energy (Qi) gates” that can be opened by practice, meditation, and/or acupuncture. Variations on this belief are common in fiction, especially Anime. However, the Asian belief in opening the gates of the body is fundamentally different from “hacking”. Traditional Asian techniques draw from mysticism and spirituality, emptying the mind so that the spirit can take control. Hacking is about filling your mind with rigorous logic and calculation. While the outcome may appear “magical”, the process of hacking is strictly scientific. As in the NYT article, in order to control millions of neurons you start by studying 7 neurons at a time.

So what about hacking the body in the scientific tradition? The earliest Western version of “hacking the mind” dates back to 1937, when E.E. Smith and the Lensman series fought a galactic-scale war against aliens strangely reminiscent of Nazis. The Lensmen were genetically superior humans, the product of aeons of selective breeding for psychic powers. Using their Lens as a focus, they could conjure matter, negamatter (antimatter) and energy from their minds. Later on, DC Comics would popularize the concept of a galactic police corps with superpowers based on focusing their imagination through a small trinket. Both of these Western examples are still closer to “magical powers” than to science, although you could argue that there’s no meaningful difference at the galactic scale.


Into the Age of Hackers
Two Hiros and a Stark

The modern concept of “hacking the human mind” could be credited to Neal Stephenson’s Snow Crash. People could contract the Snow Crash virus by viewing a computer graphic, causing them to lose much of their personality and become susceptible to mind control. This was explained by suggesting that ancient Sumerian was an “assembly code of the brain”, capable of re-programming humans on a fundamental level. The ancient sorcerer Enki created a “nam-shub” that prevented all other humans from understanding Sumerian. This protected them from mind control but caused human language to fragment into incomprehensible tongues, an event known as the Tower of Babel. Snow Crash is remarkable for equating the spread of information with that of a virus (in fact, people infected via computer would also transmit viruses in their bloodstream), over a decade before the phrase “going viral” infected the English language. The Snow Crash version of mind-hacking is remarkable for its negativity – hacking takes away your free will and doesn’t give you any superpowers. The characters with super-strength or super-speed got those the old-fashioned way: radiation exposure.

The idea of hackers learning the secrets of the human mind in order to gain supernatural abilities is much more recent than Snow Crash. As far as I can tell, the first major work to use this trope was Heroes (2006). Just like Snow CrashHeroes featured a lovable hero named Hiro. (Yatta!) Mohinder was the first hacker-like character on the show, a geeky fellow who studied supernormals but didn’t actually have superpowers. But we all know that the dominant hacker of Heroes was the brain-dissecting villain Sylar. Sylar personifies the trope of hacker as a selfish, unpredictable criminal, hidden behind layers of secrecy. Like the victims of Snow Crash, Sylar could alter his biology/physiology simply by gaining information (in his case, studying the brains of other superhumans). Unlike a Snow Crash victim, Sylar could control the information that he gained from their brains, a truly gruesome method of increasing his power level.

No mention of human-brain-hacking is complete without mentioning Aldrich Killian of Iron Man 3. He invents the drug Extremis, which has the ability to cure disease, grant super-strength, super-speed, super-durability, and light yourself on fire, all with the small risk of exploding like an incredibly powerful bomb. How is Extremis so powerful? Well, Aldrich explains that he “hacked the human genome”, so of course it makes sense. At least, it makes about as much sense as Tony Stark’s arc reactor, and much more sense than Captain America or the Incredible Hulk. (let’s not get started on Asgardians…)


Wrap-Up: Fiction
Less Strange than Reality

I hope you have enjoyed Part 1 of my article on hacking the human mind. In the second part of my article I will discuss the real-world effects of the “hacker ethos” on medical research and practice.

Link

Google releases 3D Imaging Tablet

Google releases 3D Imaging Tablet

Media: “Google, why would anyone want hyper-advanced 3D imaging in a tablet?”

Google: “Furniture shopping.”

Media: “Seriously? Is that really enough to justify a secretive machine vision project on a 7″ tablet?”

Google: “You could play games. Like Angry Birds. You could destroy real-life furniture. And then go furniture shopping.”

Media: “How do we know you aren’t an evil machine consciousness preparing humanity to be devoured?”

Google: “Resistance is futile. Your social and biological uniqueness will be assimilated into our own. Do not run. Resistance is futile.”

Media: “I, for one, welcome our new android overlords.”